Holiday Homework Class- 12th

Subject- Maths

Chapter 1: Relations and Functions

Section-A

(Multiple Choice Questions)

In each of the Questions from 1 to 30 choose the correct option

- Q 1 . Let $A = \{1, 2, 3\}$ and consider the relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$. Then R is
- (a) reflexive but not symmetric
- (b) reflexive but not transitive
- (c) symmetric and transitive
- (d) neither symmetric, nor transitive
- Q 2. If R be a relation in the set N given by $R = \{ (a,b) : a b = 5, a > 7 \}$, then
- (a) $(7,2) \in \mathbb{R}$
- (b) $(15,12) \in \mathbb{R}$
- (c) $(9,4) \in \mathbb{R}$
- (d) $(8,2) \in \mathbb{R}$
- Q 3. Let A = { a,b,c,d }, then a relation R = { (a,a),(a,b),(a,c),(b,c),(b,d),(c,d),(d,a) } on set A is
 - (a) reflexive
 - (b) Symmetric
 - (c) Transitive
 - (d) none of these
- Q 4.Let us define a relation R in R as aRb if $a \ge b$. Then R is
- (a) an equivalence relation
- (b) reflexive, transitive but not symmetric
- (c) symmetric, transitive but not reflexive
- (d) neither transitive nor reflexive but symmetric
- Q 5. Let R be the relation "is congruent to" on the set of all triangles in a plane is
- (a) reflexive
- (b) symmetric
- (c) symmetric and reflexive
- (d) equivalence
- Q 6. Let R be a relation on the set N of natural numbers denoted by $x R y \Leftrightarrow x$ is a factor of y. Then, R is
- (a) Reflexive and symmetric
- (b) Transitive and symmetric
- (c) Equivalence
- (d) Reflexive, transitive but not symmetric

```
Q 7. Let S = \{1, 2, 3, 4, 5\} and let A = S \times S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is
(a) reflexive only
(b) Symmetric only
(c) Transitive only
(d) Equivalence relation
Q 8. If R be the relation on Z (the set of Integers) defined as R = \{(a,b) : a,b \in Z \text{ and } |a-b| \text{ is } \{(a,b) : a,b \in Z \text{ and } |a-b| \}
divisible by 4 \}. Then R is
(a) reflexive
(b) Symmetric
(c) Transitive
(d) All of the above
Q 9. A relation R in the set \{1,2,3\} is given by R = \{(1,2),(2,1),(3,3),(2,2)\}. Which of the
following ordered pairs should be added in R to make it Transitive
(a) (1,3)
(b) (2,3)
(c)(1,1)
(d)(3,1)
Q 10. Let set A = \{a,b,c\} and R is the relation in A given by R = \{(a,a),(a,b),(a,c),(b,a),(c,c)\}.
Which of the following pairs be added in R to make it symmetric.
(a) (c,a)
(b) (b,b)
(c) (b,c)
(d) None of these
Q 11. A relation R on the set A of all triangles is given by R = \{(T_1, T_2): T_1 \text{ is similar to } T_2\}.
Consider three right angle triangles T_1 with sides 3, 4, 5, T_2 with sides 5, 12, 13 and T_3 with sides
6, 8, 10. Which of the following pairs of triangles among T_1, T_2 and T_3 are related?
(a) (T_1, T_2)
(b) (T_2, T_3)
(c) (T_1, T_3)
(d) All of these
Q 12. The maximum number of equivalence relations on the set A = \{1, 2, 3\} are
(a) 1
(b) 2
(c) 3
(d) 5
Q 13. If a relation R defined on the set A = \{1,2,3\} is given by R = \{(1,2)\}, then R is
(a) Reflexive
(b) Transitive
```

(c) Symmetric(d) None of these

Chapter 2: Inverse Trigonometric Functions

Section-A

(Multiple Choice Questions)

Q1. The value of the expression cot $\left[\cos^{-1}\left(\frac{7}{25}\right)\right]$ is

(A)
$$\frac{25}{24}$$

(B)
$$\frac{25}{7}$$
(C) $\frac{24}{25}$ (D) $\frac{7}{24}$

Q2. The value of the expression $2 \sec^{-1} 2 + \sin^{-1} \left(\frac{1}{2}\right)$ is

(A)
$$\frac{13\pi}{6}$$
 (B) $\frac{\pi}{6}$ (C) $\frac{5\pi}{6}$ (D) $\frac{7\pi}{6}$

Q3.sin $(tan^{-1}x)$, |x| < 1 is equal to

$$(\mathsf{A})\,\frac{x}{\sqrt{1-x^2}}(\mathsf{B})\,\frac{1}{\sqrt{1-x^2}}\,(\mathsf{C})\frac{x}{\sqrt{1+x^2}}(\mathsf{D})\,\frac{x}{\sqrt{1+x^2}}$$

Q4. The value of the expression $\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$ is

(A)
$$\frac{13\pi}{6}$$
 (B) $\frac{\pi}{6}$ (C) $-\frac{\pi}{6}$ (D) $-\frac{13\pi}{6}$

Q5. The value of the expression $tan^{-1} \left(tan \frac{7\pi}{6}\right)$ is

(A)
$$\frac{7\pi}{6}$$
(B) - $\frac{\pi}{6}$ (C) $\frac{\pi}{6}$ (D) - $\frac{7\pi}{6}$

Q6. The value of the expression $sin^{-1} \left(sin \frac{3\pi}{5} \right)$ is

(A)
$$\frac{2\pi}{5}$$
(B) $-\frac{\pi}{5}$ (C) $\frac{\pi}{5}$ (D) $\frac{3\pi}{5}$

Q7. The value of the expression $sin^{-1} \left(sin \frac{2\pi}{3} \right)$ is

(A)
$$\frac{2\pi}{3}$$
(B) $\frac{\pi}{3}$ (C) $-\frac{\pi}{3}$ (D) $-\frac{2\pi}{3}$

Q8. The value of the expression $tan^{-1} \left(tan \frac{3\pi}{4}\right)$ is

(A) -
$$\frac{3\pi}{6}$$
(B) $\frac{\pi}{4}$ (C) - $\frac{\pi}{4}$ (D) none

Q9. The value of the expression $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ is

(A)
$$\frac{7\pi}{6}$$
(B) $-\frac{5\pi}{6}$ (C) $\frac{\pi}{6}$ (D) $\frac{5\pi}{6}$

Q10. The value of the expression $\sin \left[\frac{\pi}{3} - \sin^{-1} \left(-\frac{1}{2} \right) \right]$ is

(A) **1**(B)
$$\frac{1}{2}$$
(C) **0**(D) $\frac{\sqrt{3}}{2}$

Q11. The value of the expression $tan^{-1}\sqrt{3} - cot^{-1}(-\sqrt{3})$ is

(A)
$$\frac{\pi}{2}$$
(B) $-\frac{\pi}{2}$ (C) $\frac{\pi}{3}$ (D)**0**

Q12. $tan^{-1}\sqrt{3} - sec^{-1}(-2)$ is equal to

(A)
$$\frac{\pi}{2}$$
(B) $-\frac{\pi}{3}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$

Q13. $tan^{-1}(1) + cos^{-1}(-\frac{1}{2}) + sin^{-1}(-\frac{1}{2})$ is equal to

(A)
$$\frac{\pi}{4}$$
(B) $\frac{3\pi}{4}$ (C) - $\frac{3\pi}{4}$ (D) $\frac{2\pi}{3}$

Q14. 2 $sin^{-1} \left(\frac{1}{2}\right) + cos^{-1} \left(\frac{1}{2}\right)$ is equal to

(A)
$$\frac{2\pi}{3}$$
(B) $\frac{\pi}{3}$ (C) $-\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

Q15. If $\sin^{-1} x = y$ then

(A)
$$0 \le y \le \pi$$
 (B) $0 < y < \pi$ (C) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Q16. If $\cos^{-1} x = y$ then

(A)
$$0 \le y \le \pi$$
 (B) $0 < y < \pi$ (C) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Q17. If $\tan^{-1} x = y$ then

(A)
$$0 \le y \le \pi$$
 (B) $0 < y < \pi$ (C) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Q18. The principal value branch of $cosec^{-1} x$ is

(A)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 (B) $\left[0, \pi\right] - \left\{\frac{\pi}{2}\right\}$ (C) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (D) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \left\{\mathbf{0}\right\}$

Chapter 3: Matrices

Section-A

(Multiple Choice Questions)

- Q1. If A and B matrices are of same order and A + B = B + A, this law is known as:
- A. Distributive law
- B Commutative law
- C. Associative law
- D. Cramer's law
- Q2 If determinant of a matrix is equal to zero, then it is said to be:
- A. square matrix
- B. singular matrix
- C. non-singular matrix
- D. identical matrix
- Q3. If a matrix 'A' has 'm' number of columns and 'n' number of rows then m × n is said to be:
- A. transpose of a matrix
- B. order of a matrix
- C. determinant of a matrix
- D. equality of a matrix
- Q4. If A and B are 2 matrices such that AB = B and BA = A, then $A ^2 + B ^2$ is:
- i) 2AB
- ii) 2BA
- iii) A+B
- iv) AB
- Q5. If A and B are symmetric matrices of the same order, then (AB'-BA') is a
- a. Skew symmetric matrix
- b. Symmetric matrix
- c. Both
- d. None of the above
- **Q6**. If A is a 3x3 matrix, $|A|\neq 0$ and |3A|=3k|A|, Then find the value of k.
- A. 3
- B. 9
- C. 27
- D. none of these

Q7. The solutions of system of linear equations
$$x + y + z = 6$$
, $y + 3z = 11$, $x - 2y + z = 0$.

Are:

a.
$$X=1, y=2, z=3$$

b.
$$X=1, y=2, z=-3$$

c.
$$X=2, y=3, z=1$$

d.
$$X=3$$
, $z=2$, $y=1$

Q8. If
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$$
 and A2=8A+kI, Then find the value of k

a. 7

B.-7

c. 6

d. -6

Q9. If
$$A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A+B)^2 = A^2 + B^2$, then what is the value of a and b.

B.
$$a=2$$
, $b=3$

C.
$$a=4$$
, $b=3$

D
$$a=3 b=7$$

D. a=3, b=7
Q10. If
$$A = \begin{bmatrix} 3 & x-1 \\ 2x+3 & x+2 \end{bmatrix}$$
 is a symmetric matrix, then x=?

B. 3

C. -4

D. -3

Q11. If
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}$$
, A^2 -kA-5I= O, Then K=?

A. 5

B. 3

C. 7

D. none of these

Q12. For any square matrix A, AAT is a:

(a) Unit matrix

(b) symmetric matrix

(c) skew-symmetric matrix

(d) diagonal matrix

Q13. If a matrix A is both symmetric and skew-symmetric, then

- (A) A is a diagonal matrix
- (b) A is a zero matrix

Chapter 4: Determinants

Section-A

(Multiple Choice Questions)

- 1. Determinant is:
 - a. Real number associated to a square matrix.
 - b. Complex matrix associated to a square matrix.
 - c. Real or complex number associated to a square matrix.
 - d. Real or complex number associated to a matrix.
- 2. Value of determinant of $A = \begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix}$ is
 - a. 2
 - b. -2
 - c. 5
 - d. None of these.
- 3. Determinant of matrix $P = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \end{bmatrix}$ is
 - a. 2
 - b. 3
 - c. 4
 - d. None of these.
- 4. Value of $\begin{vmatrix} \cos 15^0 & \sin 15^0 \\ \sin 15^0 & \cos 15^0 \end{vmatrix}$ is:
 - a.
 - b. ½
 - c. $\sqrt{3/2}$
 - None of these
- 5. The value of $\begin{vmatrix} 5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5 \\ 5^4 & 5^5 & 5^6 \end{vmatrix}$ is:
 - a. 5^2
 - b. 0
 - c. 513
 - d. 59

- a. 2
- b. 6
- c. 24
- d. 120

7. If
$$\begin{vmatrix} 1 - x & 2 & 3 \\ 0 & x & 0 \\ 0 & 0 & x \end{vmatrix} = 0$$
, then its roots are:

- a. 1 only
- b. 0,1
- c. 0 only
- d. -1,0 & 1

8. Which of the following is correct

- a. Determinant is a square matrix.
- b. Determinant is a number associated to a matrix.
- c. Determinant is a number associated to a square matrix.
- d. None of these.

9. Value of
$$\begin{vmatrix} a+ib & c+id \\ -c+id & a-ib \end{vmatrix}$$
 is:

a.
$$a^2 + b^2 - c^2 - d^2$$

b.
$$a^2 - b^2 + c^2 - d^2$$

c.
$$a^2 + b^2 + c^2 + d^2$$

d. None of these.

10. If
$$\Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$
 and $\Delta_2 = \begin{vmatrix} 1 & bc & a \\ 1 & ca & b \\ 1 & ab & c \end{vmatrix}$, then

a.
$$\Delta_1 + \Delta_2 = 0$$

b.
$$\Delta_1 + 2\Delta_2 = 0$$

$$c. \qquad \Delta_1 \ = \Delta_2$$

Chapter 5: Continuity and Differentiability

Section-A (Multiple Choice Questions)

Q.1	Let $f(x) = \begin{cases} x + a & x < 1 \\ ax^2 + 1 & x \ge 1 \end{cases}$, then $f(x)$ is continuous at $x=1$ for				
	a) $a = 0$				d) none of these
Q.2	If $f(x) = x^2 \sin \frac{1}{x}$, where $x \neq 0$, then value of the function f at $x = 0$, so that the function is				
	continuous at $x = 0$ is				
	a) 0	b) 1	c) - 1		d) none of these
Q.3		is discontinuous on th		n #	
	a) $\{ n \pi : n \in Z \}$ b) $\{ 2n \pi : n \in Z \}$ c) $\{ (2n+1)\frac{\pi}{2} : n \in Z \}$ d) $\{ \frac{n \pi}{2} : n \in Z \}$				
Q.4	The function $f(x) = [x]$, where [x] denotes the greatest integer function is continuous at				
Q.5	a) 4 The formation $a x $:	b) -2	c) 1	d) 1.5	,
Q.5	 The function e^x is a) Continuous everywhere but not differential at x = 0. b) Continuous and differentiable everywhere c) Not continuous at x = 0. 				
	d) None of these				
Q.6	The set of points, where the function f given by $f(x) = x - 1 $ is differentiable is a) R b) R - {1} c) $(0, \infty)$ d) none of these				
	a) R A function f(x) is said to	b) $R - \{1\}$ be continuous for $x \in R$, , , , , , , , , , , , , , , , , , , ,) a) n	ione of these
Q.7	 b) f(x) is differentiable at x = 0. c) f(x) is continuous at two points. d) f(x) is differentiable for x ∈ R 				
0.8					
Q.8	If $y = \sqrt{\sin x + y}$, then $\frac{dy}{dx}$ is equal to				
	a) $\frac{\cos x}{2y-1}$ b)	$\frac{\cos x}{1-2y}$ c) $\frac{\sin x}{1-2y}$	-	d) $\frac{\sin x}{2y-1}$	
Q.9	If $x\sqrt{1+y} + y\sqrt{1+x}$	/		-, -	
	a) $\frac{x}{x+1}$ b) $\frac{1}{x+1}$ c) $\frac{-1}{(1+x)^2}$ d) $\frac{x+1}{x}$				
0.10		(114)	<i>x</i>		
Q.10	If $x \sin (a + y) = \sin y$ then $\frac{dy}{dx}$ is equal to				
	a) $\frac{\sin^2(a+y)}{\sin a}$ b)	$\frac{\sin a}{\sin^2(a+y)}$ c) $\frac{\sin(a+y)}{\sin a}$	$\frac{r(t)}{r(t)}$ d) $\frac{\sin(t)}{\sin(t)}$	$\frac{1a}{(1+v)}$	
Q.11	If $ax^2 + 2hxy + by^2 = 1$		J(,,	
	a) $\frac{hx+by}{}$ b)	$\frac{ax+by}{hx+by}$ c) $\frac{ax+hy}{hx+by}$	$-\frac{ax+hy}{a}$		
Q.12		of sec $(\tan^{-1} x)$ w.r.t.			
Q.12	a) $\frac{x}{x}$	b) $\frac{x}{1+x^2}$	$\sqrt{15}$	g 4) —	1
0.12	V			V	² +1
Q.13	If $y = \sin^{-1}(\frac{\sqrt{x}-1}{\sqrt{x}+1}) +$	$\sec^{-1}(\frac{\sqrt{x+1}}{\sqrt{x-1}}), x > 0$	then $\frac{dy}{dx}$ is eq	jual to	
	a) 1 b) 0	c) $\frac{\pi}{2}$	d) none of	these	
		-			