CLASS XI (2025-26) PHYSICS (THEORY)

TIME: 3 Hrs

Max Marks: 70

		No. of Periods	Marks
Unit–I	Physical World and Measurement		
	Chapter-2: Units and Measurements	08	
Unit-II	Kinematics		
	Chapter-3: Motion in a Straight Line	24	23
	Chapter-4: Motion in a Plane		
Unit–III	Laws of Motion		
	Chapter-5: Laws of Motion	14	
Unit–IV	Work, Energy and Power		
	Chapter-6: Work, Energy and Power	14	
Unit-V	Motion of System of Particles and Rigid Body	18	17
	Chapter–7: System of Particles and Rotational Motion		
Unit-VI	Gravitation	10	
	Chapter-8: Gravitation	12	
Unit-VII	Properties of Bulk Matter		
	Chapter-9: Mechanical Properties of Solids	24	
	Chapter-10: Mechanical Properties of Fluids		
	Chapter–11: Thermal Properties of Matter		
Unit-VIII	Thermodynamics	10	20
	Chapter–12: Thermodynamics	12	
Unit–IX	Behaviour of Perfect Gases and Kinetic Theory of Gases	08	
	Chapter–13: Kinetic Theory		
Unit–X	Oscillations and Waves		40
	Chapter-14: Oscillations	26	10
	Chapter-15: Waves		
	Total	160	70

PRACTICALS

Total Periods: 60

The record, to be submitted by the students, at the time of their annual examination, has to include:

- Record of at least 8 Experiments [with 4 from each section], to be performed by the students.
- Record of at least 6 Activities [with 3 each from section A and section B], to be performed by the students.
- Report of the project carried out by the students.

EVALUATION SCHEME

Time 3 hours

Max. Marks: 30

Торіс	Marks
Two experiments one from each section	7+7
Practical record (experiment and activities)	5
One activity from any section	3
Investigatory Project	3
Viva on experiments, activities and project	5
Total	30

Monthly Planner

Month	Chapter From	Learning objective	Practical's and Activities
	Text Book		
	Chapter-2:	After studying students are able to	• To measure diameter of a
	Units and	understand the concept of Physics-	small
April	Measurements	scope and excitement; nature of	spherical/cylindrical
		physical laws; Physics, technology	body and to measure
		and society.	internal diameter and
		Need for measurement: Units of	depth of a given
		measurement; systems of units; SI	beaker/calorimeter using
		units, fundamental and derived	

		unite Longth mass and time	Varnian Calinara and	
		measurements; accuracy and	hence find its volume.	
		precision of measuring	• To measure diameter of a	
		instruments; errors in	given wire and thickness	
		measurement; significant figures.	of a given sheet using	
		Dimensions of physical quantities,	screw gauge.	
		dimensional analysis and its		
		After studying students are able to		
		understand the concept of		
		Elementary concepts of		
		differentiation and integration for		
		describing motion, uniform and		
	Chapter-3:	non- uniform motion, average	• To determine radius of	
	Motion in a	speed and instantaneous velocity,	curvature of a given	
	Straight Line	uniformly accelerated motion,	spherical surface by a	
	Motion in a	granhs	spherometer.	
	Plane	Relations for uniformly		
		accelerated motion		
		Scalar and vector quantities;		
		position and displacement vectors,		
24		general vectors and		
мау		their notations; equality of vectors,		
		number: addition and subtraction		
		of vectors, relative velocity. Unit		
		vector; resolution of a vector in a		
		plane, rectangular components,		
		Scalar and Vector product of		
		vectors.		
		Motion in a plane, cases of uniform		
		projectile motion uniform circular		
		motion.		
	Summer vacation			
		After studying students are able to	• Using a simple	
		understand the Concept of Law of	pendulum, plot its L-T ²	
		and its applications	graph and use it to find the effective length of	
		Equilibrium of concurrent forces.	second's nendulum.	
	Chapter-5:	Static and kinetic friction, laws of	o pontaniani	
	Laws of Motion	friction, rolling friction,		
		lubrication.		
	Character 6	Dynamics of uniform circular		
July	Unapter-6: Work Enormy	motion: Centripetal force,		
	and Power			

		vehicle on a level circular road, vehicle on a banked road. Work done by a constant force and a variable force; kinetic energy, work-energy theorem, power. Notion of potential energy, potential energy of a spring, conservative forces: conservation of mechanical energy (kinetic and potential energies); non- conservative forces: motion in a vertical circle; elastic and inelastic collisions in one and two dimensions.	
		PT-1 Examination	
August	Chapter-7: System of Particles and Rotational Motion Chapter-8: Gravitation	After studying students are able to understand the concept of Centre of mass of a two-particle system, momentum conservation and centre of mass motion. Centre of mass of a rigid body; centre of mass of a uniform rod. Moment of a force, torque, angular momentum, law of conservation of angular momentum and its applications. Equilibrium of rigid bodies, rigid body rotation and equations of rotational motion, comparison of linear and rotational motions. Moment of inertia, radius of gyration, values of moments of inertia for simple geometrical Objects. Universal law of gravitation. Acceleration due to gravity (recapitulation only) and its variation with altitude and depth. Gravitational potential energy and gravitational potential, escape velocity, orbital velocity of a satellite, Geo-stationary satellites.	 To make a paper scale of given least count, e.g., 0.2cm, 0.5 cm. To determine mass of a given body using a meter scale by principle of moments. To study the variation in range of a projectile with angle of projection.
Half yearly Examination			
September	Chapter-9: Mechanical	After studying students are able to understand the concept of Stress-	

	Properties of	strain relationship. Hooke's law.	
	Solids	Young's modulus, bulk modulus	
		After studying students are able to	• To find the force constant
		understand the concept of	of a helical spring by
		Pressure due to a fluid column:	plotting a graph between
		Pascal's law and its applications	load and extension.
		(hydraulic lift and hydraulic	
		brakes), effect of gravity on fluid	• To determine specific
		pressure.	heat capacity of a given
		Viscosity, Stokes' law, terminal	solid by method of
	Chapter-10:	velocity, streamline and turbulent	mixtures.
	Mechanical	flow, critical velocity,	• To study the relation
	Properties of	Bernoulli's theorem and its	between frequency and
	Fluids	applications.	length of a given wire
October	Chapter-11:	Surface energy and surface	under constant tension
	Thermal	tension, angle of contact, excess of	using sonometer.
	Properties of	pressure across a curved surface,	
	Matter	application of surface tension	
		ideas to drops, bubbles and	
		capillary rise.	
		Heat, temperature, thermal	
		expansion; thermal expansion of	
		solids, liquids and gases,	
		anomalous expansion of water;	
		specific heat capacity; Cp, Cv.	
		calorimetry; change of state -	
		latent heat capacity.	
		Heat transfer-conduction,	
		convection and radiation thermal	
		Plackhody radiation Wein's	
		displacement Law Stofan's law	
		and Croonhouse offect	
		and dreenhouse effect.	
	1	PT 2 Examination	
		After studying students are able to	
	Chapter-12:	understand the concept of	• To observe the decrease
	Thermodynam	Inermal equilibrium and	in pressure with increase
	ICS	definition of temperature (zero th	in velocity of a fluid.
		law of thermodynamics), heat,	• To study the factors
		work and internal energy. First	affecting the rate of loss
		iaw of thermoland adjobation	of neat of a liquid.
			• To study the effect of
		processes.	detergent on surface
		roversible and irreversible	tension of water by
		nrocesses	observing capillary rise.
	Chanter-13.	Equation of state of a perfect gas	
November	Kinetic Theory	work done in compressing a gas.	

		Kinetic theory of gases -	
		assumptions concept of pressure	
		Kinetic interpretation of	
		temperature: rms speed of gas	
		molecules: degrees of freedom	
		law of aqui-partition of operay	
		(atatament only) and application	
		(statement only) and application	
		to specific fleat capacities of gases;	
		concept of mean free path,	
		Avogadro s number.	
		After studying students are able to	
		understand the concept of Periodic	
		motion - time period, frequency,	
		displacement as a function of time,	
		periodic functions.	
		Simple harmonic motion (S.H.M)	
		and its equation; phase;	
		oscillations of a loaded spring	
	Chapter-14:	restoring force and force constant;	
	Oscillations	energy in S.H.M. Kinetic and	
	Chapter-15:	potential energies; simple	
December	Waves	pendulum derivation of expression	
		for its time period. Free, forced	
		and damped oscillations	
		(qualitative ideas only), resonance.	
		Wave motion: Transverse and	
		longitudinal waves, speed of	
		travelling wave, displacement	
		relation for a progressive wave,	
		principle of superposition of	
		waves, reflection of waves,	
		standing waves in strings and	
		organ pipes, Beats	
		Model Test Paper	
January		Revision of chapters: Physical	
		World, Units and Measurements,	
		Motion in a Straight Line, Motion	
		in a Plane, Laws of Motion, Work,	
		Energy and Power, System of	
		Particles and Rotational	
		Motion, Gravitation	
February		Revision of chapters: Mechanical	
		Properties of Solids, Mechanical	
		Properties of Fluids, Thermal	
		Properties of Matter,	
		Thermodynamics, Kinetic Theory.	
		Oscillations, Waves	
		· ·	

Annual Examination