CLASS XII (2025-26) PHYSICS (THEORY)

Time: 3 hrs. UNIT CHAPTERS MARKS Unit-I Electrostatics Chapter-1: Electric Charges and Fields Chapter-2: Electrostatic Potential and Capacitance 16 Unit-II Current Electricity Chapter-3: Current Electricity Magnetic Effects of Current and Magnetism Unit-III Chapter-4: Moving Charges and Magnetism Chapter-5: Magnetism and Matter 17 Electromagnetic Induction and Alternating Currents Unit-IV Chapter-6: Electromagnetic Induction Chapter-7: Alternating Current Unit-V Electromagnetic Waves Chapter-8: Electromagnetic Waves Unit-VI Optics 18 Chapter-9: Ray Optics and Optical Instruments Chapter-10: Wave Optics Unit-VII Dual Nature of Radiation and Matter Chapter-11: Dual Nature of Radiation and Matter Unit-VIII Atoms and Nuclei 12 Chapter-12: Atoms Chapter-13: Nuclei Unit-IX Electronic Devices 7 Chapter-14: Semiconductor Electronics: Materials, Devices

Total

and Simple Circuits

Max Marks: 70

70

PHYSICS (PRACTICALS)

The record, to be submitted by the students, at the time of their annual examination, has to include:

- Record of at least 8 Experiments [with 4 from each section], to be performed by the students.
- Record of at least 6 Activities [with 3 each from section A and section B], to be performed by the students.
- Report of the project carried out by the students.

EVALUATION SCHEME

Time 3 hours

Max. Marks: 30

Topic	Marks
Two experiments one from each section	7+7
Practical record (experiment and activities)	5
One activity from any section	3
Investigatory Project	3
Viva on experiments, activities and project	5
Total	30

Monthly Planner

Month	Chapter	Торіс	Practical's and Activities
April	Ch 1: Electric	Electric Charges, Coulomb's law,	• To assemble the
	Charges and	forces between multiple charges,	components of a given
	Fields	continuous charge distribution.	electrical circuit.
	Ch 2:	Electric field, electric field lines,	• Assemble a household
	Electrostatic	electric dipole, electric field due to a	circuit comprising three
	Potential and	dipole, torque on a dipole in uniform	bulbs, three (on/off)
	Capacitance	electric field.	switches, a fuse and a
		Electric flux, Gauss's theorem and its	power source.
		applications to find field.	_
		Electric potential, potential	
		difference, system of charges, Equi-	
		potential surfaces, electrical potential	
		energy of a system of two point	
		charges,	
		Dielectrics and electric Polarization,	
		capacitors and capacitance,	
		combination of capacitors in series	
		and in parallel, capacitance of a	
		parallel plate capacitor with and	
		without dielectric medium between	

		the plates, energy stored in a	
		capacitor.	
May	Ch 3: Current	Electric current, flow of electric	• To determine resistivity of
	Electricity	charges in a metallic conductor, drift	two / three wires by
	Ch 4: Moving	velocity, mobility, Ohm's law,	plotting a graph for
	Charges and	electrical resistance, V-I	potential difference versus
	Magnetism	Characteristics, electrical energy and	current.
		power, electrical resistivity and	• To find resistance of a
		conductivity; temperature	given wire / standard
		dependence of resistance.	resistor using metre bridge.
		Internal resistance of a cell,	
		combination of cells in series and in	
		parallel, Kirchhoff's laws, Wheatstone	
		bridge, meter bridge, Potentiometer.	
		Magnetic field,	
		Biot - Savart law and its application.	
		Ampere's law and its applications	
		Solenoids.	
		Force on a moving charge in uniform	
		magnetic,	
		Force on a current-carrying	
		conductor in a uniform magnetic field,	
		force between two parallel current-	
		carrying conductors,	
		moving coil galvanometer-its current	
		sensitivity and conversion to	
		ammeter and voltmeter.	
June		Summer vacation	
		Term 1 Examination	
July	Ch 5:	Current loop as a magnetic dipole,	• To determine resistance of
	Magnetism and	moment of a revolving electron, bar	a galvanometer by half-
	Matter.	magnet as an equivalent solenoid,	deflection method and to
	Ch 6:	magnetic field lines;	find its figure of merit.
	Electromagnetic	Electromagnetic induction; Faraday's	• To find the frequency of AC
	Induction.	laws, induced EMF and current;	mains with a sonometer.
		Lenz's Law, Eddy currents. Self and	
		mutual induction.	
August	Ch 7:	Alternating currents, peak and RMS	• To study the variation in
	Alternating	value of alternating current/voltage;	potential drop with
	Current	reactance and impedance; LC	length of a wire for a
	Ch 8:	oscillations, LCR series circuit,	steady current.
	Electromagnetic	resonance; power in AC circuits	• To study the effect of
	Waves	AC generator and transformer.	intensity of light on LDR.
		After studying students are able to	• To find refractive index of
		understand the concept of	a liquid by using convex
		Electromagnetic waves, their	lens and plane mirror.
		characteristics, their Transverse	*
		nature Electromagnetic spectrum.	
September		Half Yearly Examination	

October	Ch 9: Ray Ontics	Reflaction of light.	• To observe diffraction of
ottober	and Ontical	Refraction of light total internal	light due to a thin slit
	Instruments	reflection and its applications optical	 To find the value of v for
	Ch 10: Wave	fibers, refraction at spherical surfaces.	different values of <i>u</i> in
	Ontics	lenses, thin lens formula, lens maker's	case of a concave mirror
	optito	formula magnification power of a	and to find the focal
		lens	length
		Microscopes and astronomical	• To find the feed length of
		telescones	• To find the focal length of
		Wave front and Huygen's principle	graphs between u and u
		Proof of laws of reflection and	or between 1 /u and 1 /u
		refraction using Huygen's principle	of between 1/u and 1/v.
		Interference Voung's double slit	
		experiment and expression for fringe	
		width coherent sources and	
		sustained interference of light	
		diffraction due to a single slit	
November	Ch 11: Dual	Dual nature of radiation	• To draw the L-V
November	Nature of	Photoelectric effect Hertz and	characteristic curve for a
	Radiation and	Lenard's observations:	n-n junction diode in
	Matter	Finstein's photoelectric equation-	forward bias and reverse
	Ch 12: Atoms	particle nature of light Experimental	hias
	Ch 13: Nuclei	study of photoelectric effect	 To identify a diode an
	Ch 14:	Matter waves-wave nature of	LED a resistor and a
	Semiconductor	particles, de-Broglie relation	capacitor from a mixed
		Alpha-particle scattering experiment:	collection of such items.
		Rutherford's model of atom; Bohr	
		model, energy levels, hydrogen	
		spectrum.	
		Composition and size of nucleus	
		Mass-energy relation, mass defect,	
		nuclear fission, nuclear fusion. Energy	
		bands in conductors,	
		Semiconductor diode - I-V	
		characteristics in forward and reverse	
		bias, diode as a rectifier;	
December		1 st Pre-Board Examination	 Dn
January	Practical Examination		
February	2 nd Pre-Board Examination		
March		Annual Examination	